Spectra of Linearized Operators for NLS Solitary Waves
نویسندگان
چکیده
Nonlinear Schrödinger equations (NLSs) with focusing power nonlinearities have solitary wave solutions. The spectra of the linearized operators around these solitary waves are intimately connected to stability properties of the solitary waves and to the long-time dynamics of solutions of NLSs. We study these spectra in detail, both analytically and numerically.
منابع مشابه
Instability of nonlinear dispersive solitary waves
We consider linear instability of solitary waves of several classes of dispersive long wave models. They include generalizations of KDV, BBM, regularized Boussinesq equations, with general dispersive operators and nonlinear terms. We obtain criteria for the existence of exponentially growing solutions to the linearized problem. The novelty is that we dealt with models with nonlocal dispersive t...
متن کاملNumerical verification of a gap condition for linearized NLS
We make a detailed numerical study of the spectrum of two Schrödinger operators L ± arising in the linearization of the supercritical nonlinear Schrödinger equation (NLS) about the standing wave, in three dimensions. This study was motivated by a recent result of the second author on conditional asymptotic stability of solitary waves in the case of a cubic nonlinearity. Underlying the validity ...
متن کاملA scalar nonlocal bifurcation of solitary waves for coupled nonlinear Schrödinger systems
An explanation is given for previous numerical results which suggest a certain bifurcation of ‘vector solitons’ from scalar (single-component) solitary waves in coupled nonlinear Schrödinger (NLS) systems. The bifurcation in question is nonlocal in the sense that the vector soliton does not have a small-amplitude component, but instead approaches a solitary wave of one component with two infini...
متن کاملNumerical verification of a gap condition for a linearized nonlinear Schrödinger equation
We make a detailed numerical study of the spectrum of two Schrödinger operators L± arising from the linearization of the supercritical nonlinear Schrödinger equation (NLS) about the standing wave, in three dimensions. This study was motivated by a recent result of the second author on the conditional asymptotic stability of solitary waves in the case of a cubic nonlinearity. Underlying the vali...
متن کاملAsymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves
In this paper, we study a class of nonlinear Schrödinger equations (NLS) which admit families of small solitary wave solutions. We consider solutions which are small in the energy space H, and decompose them into solitary wave and dispersive wave components. The goal is to establish the asymptotic stability of the solitary wave and the asymptotic completeness of the dispersive wave. That is, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 39 شماره
صفحات -
تاریخ انتشار 2007